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The Problem

Can we use geodetic data to infer
lateral variation in rigidity ?
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Use gradients in velocity field to identify
where active faults are locked and
accumulating stress.

Gradients in velocity field can be
attributed to:

1.Elastic distortion around locked faults
2.Lateral variations in lithospheric rigidity
(thickness/stiffness)

Can we use geodetic data to infer lateral
variation in rigidity ?
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nferred Lateral Variations in Crustal Rigidity

Great Sumatra Fault

Elastic Half-Space Models
e.g., Le Pichon (2005)

Fault parallel velocity (mm/yr)
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Inferred Lateral Variations in Crustal Rigidity

. Chéry (2008)
L Plate Models

B e.g., Chéry (2008), Jolivet et al. (2008)

Lateral thickness variation
Flow underneath plates is not considered.
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Inferred Lateral Variations in Crustal Rigidity

Lundgren et al. (2009) Finite Element Models
| e.g., Lundgren et al (2009), Schmalze et
al. (2005)

== i A Inversions are difficult because
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Why revisit this problem?

» Elastic half-space and plate models neglect viscous flow — we
show that this is important

* Finite Element models too slow to fully explore model space
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Our Model:
 Displacement-discontinuity Boundary Element Method

* Elastic layers overlying viscoelastic half-space

« Lateral variation of rigidity: e.g. stiffness and thickness

- ERAMHERKEOLY R Abaelfinite-width screw
dislocation [e.g. Okada, 1992]
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Our Model

Boundary conditions
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Our Model:

For a purely elastic problem,

b =G*s b : a vector of boundary conditions
s . avector of corresponding displacements
=>s=G1p G : a matrix of Green's functions,
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Our Model

Stresses vary with time, so do s and b.
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Our Model:

Stresses vary with time, so do s and b.

At the jth increment, the displacement
discontinuity distribution is =L 3
s = » G(t,t;,5,,S,4S: 1) " b
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Our Model: EQ cycle model

Scheme for computing an earthquake cycle-invariant velocity profile
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Our Model: EQ cycle model

Scheme for computing an earthquake cycle-invariant velocity profile
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Our Model: EQ cycle model

Scheme for computing an earthquake cycle-invariant velocity profile
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Co-seismic

t=n*T
where n = o+1, w0+2, 0+3,....

DI

Inter-seismic

t=n*T
wheren =ow+1, 0+2, 0+3,....
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Asymmetry of Deformation
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Contrast in Elastic
Thickness

Asymmetry varies with the time
since last earthquake (1)

Asymmetry is more pronounced
at early times
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Asymmetry of Deformation
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Asymmetry of Deformation

Earthquake recurrence time(T): 250 years
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Asymmetry of Deformation
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Honte Carlo Inversion

-- Metropolis method

To sample the posterior distribution, we Initiate a random walk
through the model space that samples the a priori distribution.

— | +Zk akykek

, where m =[m* m*> m3 m* .

a, : scale factor
Vi - (-1, 1) uniform random deviate

e, : the unit vector along the kth axis in parameter
space



" A
Markov Chain random walk
An example: samples projected to 2D
m=m!m2m3m* ... m9]

The walk moves to the next model with probability

P. =min (1,
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pp- probability density function of
the model parameters
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Markov Chain random walk

Sample distribution
A o .

Probabjity contour
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Great Sumatra Fault, Indonesia
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Results

B For Great Sumatra fault, the inversion result shows eastern elastic
layer must be stiffer than western one but there is no resolved a contrast
In elastic thickness.

Consistent with the manifestion of geology
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Results
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Carrizo segment of San Andreas Fault, USA
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" o i inversi - .
Hmthe inversion favors a thicker layer on .
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Results

Plate Velocity Thickness of Right Elastic Layer Thickness of Left Elastic Layer
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Conclusions

Can we use geodetic data to infer
lateral variation in rigidity ?
Yes, we can
(up to some degree).



Thank you for your attention!
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Great Sumatra Fault
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Results

ratio of t; to T vs. rigidity ratio ratio of t; to T vs. thickness ratio

E 0.3 g U.0

> <

T 0.2 :tl'-‘

L o

<@ 2 06 =

o 0.1 ‘8 o

- O ‘ =}

(0] =

> 0 T? 0.4 3

I 2 160 S

= <= 0.2 ]

Y— o 50 _.

o -0.2 o =

2 ® ®

‘(-6 — 5 40

< -0.3 =3

> @ 0 <

= 0.4 2 o

2 0. 7

2 5 =
s o

2-05 e =

e E

& —0.6 =

D =-04

0 0.2 0.4 0.6 0.8 1 - 0 0.2 0.4 0.6 0.8 1
Ratio of tRto T Ratioof tRto T

t.: Stress relaxation time
T. earthquake recurrence time

34



